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Abstract6

A method for partitioning a large computation task (direct, variable resolution7

bathymetric grid construction from raw observations) into thread-parallel code8

is described. Based on the data density estimated for the first pass of the chrt9

algorithm, this algorithm statically partitions the estimation task into spatially10

distinct blocks of approximately equal total data observation count so that each11

can be executed in parallel and be expected to complete approximately concur-12

rently. No communication between blocks or further load balancing is therefore13

required. A branch-and-bound algorithm is used to control the complexity of14

the partitioning task, but the computation time increases significantly as more15

partitions are required, leading to a degree of diminishing returns for allocating16

further computational resources and suggesting alternative approaches for high17

thread-count systems. Speed-up of the algorithm over a pair of test datasets18

(using real-world hydrographic survey data) shows that the performance con-19

sistently improves with the number of computational tasks assigned, initially20

(super-) linearly, although ultimately sub-linearly as other resource sharing lim-21

itations take over. An overall speedup of 4.1 times is demonstrated with a22

quad-core single-processor workstation.23
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1. Introduction26

Bathymetry is often a base layer in marine spatial modelling, providing an27

important constraint on the physical environment (e.g., defining the waveguide28

for acoustic propagation studies) and driving other analyses. The reconstruc-29

tion of a best-estimate of depth (or, more generally, any scalar field) within a30

given area based on remote-sensed observations (Krishnan et al., 2010; Hofierka31

et al., 2017) is therefore an important problem with many practical applications,32

including ocean mapping, geophysical modelling, coastal zone management, and33

nautical charting.34

The problem is computationally challenging. The datasets are often large35

(order 109 − 1010 observations), and the algorithms can be complex due to36
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dataset features such as observational blunders (Calder and Mayer, 2003; Debese37

et al., 2012; Isenburg et al., 2006). The datasets may also have a spatial-varying38

data density, requiring spatial adaptation of reconstruction resolution to avoid39

spatial aliasing or over-smoothing. (In hydrographic practice, over-smoothing40

could result in missed navigationally significant objects, which are a primary41

concern.) In many cases, the data density is approximately a function of the42

water depth, so deeper areas can only be reconstructed at significantly lower43

resolution; these changes can happen within very short distances, for example44

in fjord-like environments.45

Efficient computation of the reconstruction is therefore essential. In addi-46

tion to minimising processing time, fast computation allows for more advanced47

algorithms to be built around the basic estimation task. For example, it can48

be difficult to compensate for the effects of slope in CHRT (the estimation al-49

gorithm considered here) a priori because there is no good estimate of slope50

until the reconstruction is computed, but that reconstruction is biased by lack51

of slope compensation. Iterating to solution is plausible, but if the algorithm52

is expensive to compute, the iterations might take sufficiently long as to render53

the method ineffective.54

Computing a reconstruction in parallel is therefore advantageous. Many55

algorithms, however, are either global (i.e., require all data in an area to proceed,56

for example the surface fitting of Debese et al. (2012)), or non-local (i.e., need to57

interact with nearby estimation sites to complete the estimation, for example the58

continuous spline in tension method of Smith and Wessel (1990)), which can59

make them difficult to segment for parallel implementation. Sending packets60

of observations to different threads for update of a common data structure61

generally requires a significant level of complexity in the data structure to allow62

simultaneous access, while splitting spatially has difficulties in ensuring that63

the sub-tasks are well balanced. A solution which is well balanced, does not64

require memory locking, and can be scaled to many computational resources is65

therefore key.66

Load-balancing, or the more general case of splitting a non-even workload67

computational domain over a number of computational resources so as to achieve68

some metric, is a common problem, and has therefore received much attention69

in the literature. The problem of finding the optimal general partition in two70

dimensions is known to be NP-Hard (Khanna et al., 1998), or NP-Complete71

in some cases such as the Generalized Block Distribution (Grigni and Manne,72

1996); even achieving a bound on the performance within a factor of two is73

NP-Hard (Aspvall et al., 2001). Consequently, most of the research on the74

matter has revolved around finding better approximations to the problem, and75

lowering the upper bound on performance (see, e.g., (Manne and Sørevik, 1996),76

(Aspvall et al., 2001), (Berman et al., 2001), (Lorys and Paluch, 2003), (Saule77

et al., 2012), etc.).78

The most general case of partitioning would allow for arbitrary segments to79

be assigned to a computational resource; in keeping with Tobler’s Law (Tobler,80

1970), however, most solutions focus on assigning rectangular areas in order to81

maintain advantages of spatial locality in the computations. Most work has been82
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done on recursive partitions (Berger and Bokhari, 1987), the rectilinear parti-83

tion (Nichol, 1991), also known as the Generalized Block Distribution (Grigni84

and Manne, 1996), and the jagged partition (Manne and Sørevik, 1996), also85

known as the Semi-generalized Block Distribution (see (Saule et al., 2012) for a86

good overview), although there are many more potential partitioning schemes.87

The complexity and performance of the best known algorithms for the var-88

ious approximations vary widely. Saule et al. (2012) compare a variety of al-89

gorithms, with different heuristics designed to achieve better performance, in-90

cluding hierarchical sub-division, rectilinear division, and jagged partitions, for91

which polynomial time algorithms are available. They conclude that their jagged92

partition variant, or a hierarchical subdivision may achieve better load balanc-93

ing than other algorithms while still being runtime efficient, while a combination94

of algorithms (a “hybrid”) can improve on achievable balance even further. (In-95

triguingly, the best case load imbalances reported are of similar magnitude to96

those reported here.)97

These approaches, while efficient, are more constrained than is required in98

the case presented here, primarily due to a basic assumption that communica-99

tions costs between the segments of the partition are important. Here, however,100

given the observations, each segment of the partition can compute indepen-101

dently its part of the solution to the overall estimation problem, so there is no102

limitation to the arrangement of the segments, and a more general solution can103

be attempted. Furthermore, the focus here is on splitting the overall task over104

a relatively small number of computational resources, since the primary goal105

is a multithreaded, single CPU solution, since it remains the most commonly106

available computational resource for most users in the field (Qin and Zhan,107

2012). Consequently, the more sophisticated heuristic-based algorithms are not108

required, and an optimal solution of the (constrained) partitioning problem can109

be used, simplifying the implementation. (The problem of scaling to higher110

numbers of computational resources is considered in Section 4.)111

In this paper, therefore, a spatial partitioning algorithm is proposed for the112

chrt (cube with Hierarchical Resolution Techniques) algorithm (Calder and113

Rice, 2017) which takes advantage of the structure of chrt to ensure that each114

computational resource can operate independently of the others without com-115

munication or interlocks so long as they have global access to all of the observa-116

tions. (Section 2.1 has an outline of the chrt algorithm.) The algorithm uses117

the data density estimates computed during the first pass of the chrt algorithm118

to drive the partition, which allows for the partition segments to contain ap-119

proximately the same number of observations, and consequently to have nearly120

uniform computation time. Our goal here is not to minimise the maximum cost121

for any segment (c.f. (Saule et al., 2012), or (Muthukrishnan and Suel, 2005))122

but to have even load across all of the computational resources, hence keeping123

them all busy for the minimal time with highest efficiency. Operating system file124

caching assists in delaying IO-limited performance (i.e., where recently used files125

remain in memory, and therefore are not subject to spinning-disc latency), and a126

branch-and-bound evaluator allows the partition to be computed efficiently. Use127

of the partitioning algorithm allows ready extension of the chrt algorithm to128
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a multi-threaded implementation, with consequent performance improvement.129

The remainder of the paper outlines the relevant features of the chrt al-130

gorithm that support the partitioning algorithm, its implementation, and the131

performance improvements achieved using commodity single-processor worksta-132

tion hardware. Finally, some perspectives on the ability of the algorithm to be133

scaled, and generalised to a distributed (i.e., network-connected) implementa-134

tion, are offered.135

2. Methods136

2.1. Core Estimator137

The chrt (cube with Hierarchical Resolution Techniques) algorithm (Calder138

and Rice, 2017), a development of the cube (Combined Uncertainty and Bathy-139

metry Estimator) algorithm (Calder and Mayer, 2003) was used as the basis for140

the current work. The chrt algorithm was developed to estimate variable reso-141

lution depths from raw observational data based on the premise that in regions142

where there is higher data density it should be possible to reconstruct with143

smaller sample spacings, giving higher resolution reconstructions of the surface.144

The algorithm starts with a low-resolution virtual tile (Yıldırım et al., 2015)145

grid across the area of interest, and at each grid node estimates the data den-146

sity of the observations. A piecewise constant sample spacing (pcss) grid is147

then constructed by replacing each low-resolution grid cell with a regular grid148

at the sample spacing determined by the data density, after which a variable149

resolution depth reconstruction can be computed in a second pass. Figure 1150

shows an example of the first pass of the algorithm applied to a hydrographic151

survey in Woods Hole, ma.152

A basic problem for any parallel algorithm is how to split the task into man-153

ageable sub-tasks. The low-resolution grid used in chrt allows for a relatively154

simple solution to this problem since the refinement grids established after the155

first pass of the algorithm are by design constrained to lie entirely within their156

parent cell, Figure 2. Consequently, given the observations that contribute to157

the cell (which may include some immediately adjacent in order to avoid edge158

effects), the computation of each cell is independent of the others, and there-159

fore can be processed without any communication or interlock, and there is no160

requirement for “ghost cell” edge buffers (Tesfa et al., 2011). Any sub-group of161

cells can therefore be assigned to any available computational resource, so long162

as it has access to all of the observations. This decomposition of the base algo-163

rithm avoids having to design a variant for parallel implementation, with all of164

the associated development and maintenance costs (Hofierka et al., 2017). The165

chrt Conformance Test Suite (Calder and Plumlee, 2017) ensures equivalence166

of serial and parallel computation.167

2.2. Partitioning Scheme168

For the chrt algorithm, the processing cost is reasonably approximated by169

the number of observations that have to be assimilated at a particular recon-170

struction location. A plausible load balancing partitioning scheme is therefore171
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(a) Low resolution bathymetry (m); the gross
features are clear, but significant objects (e.g.,
mooring blocks, pilings) require the variable-
resolution data to resolve.
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(b) Data density (snd m−2, log scale). Note
the hole in the middle caused by a very shallow
area that was not surveyed for safety.
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(c) Predicted sample spacing (m) for refine-
ments.

Figure 1: Example of the chrt algorithm applied to a noaa survey in Woods
Hole, ma, showing (a) first-pass low-resolution depth estimate, (b) data density
estimate (note logarithmic scale), and (c) estimated sample spacing for each
low-resolution cell. Black rectangle is shown in detail in Figure 2. This figure
is reproduced from Calder and Rice (2017).
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Figure 2: Example of variable resolution depth reconstruction, and the loca-
tion of variable resolution reconstruction points derived from data density es-
timates during the first pass for the data indicated in the black rectangle in
Figure 1. Each refinement grid is constrained to be entirely within the parent
low-resolution grid cell (here, at 8 m intervals). Colours represent the estimated
depths; white dots mark the locations of the variable resolution estimation
points. Labels on the geographic axes mark the edges of the low-resolution cells
containing the refined (white dot) grids. This figure is reproduced from Calder
and Rice (2017).
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to split the overall area to be processed into sub-areas that contain approxi-172

mately the same number of observations. (Alternatives, such as partitioning by173

input files and then recombining partial grids, or dynamic partitioning of sub-174

groups (Yıldırım et al., 2015) would lead to serialized code or higher communi-175

cations costs, respectively.) In order to facilitate this, the partition algorithm176

assumes that a spatial observation density estimate is available from the first177

pass of the chrt algorithm (this is a core component of the base algorithm).178

Let the data density estimates be arranged in a grid, ρ(u, v), 0 ≤ u < U, 0 ≤179

v < V, (u, v) ∈ Z2, with N total observations in the dataset spread through180

the area. The goal is to find an optimal partition of the overall domain S0 =181

{(u, v) : (u, v) ∈ [0, U) × [0, V )} into C segments, one for each computational182

resource, each containing an equal number of observations. The grid could183

be partitioned into arbitrarily-shaped groups of cells with equal numbers of184

observations, but to contain the complexity consider admitting only north-south185

or east-west segment boundaries (Berger and Bokhari, 1987).186

The algorithm solves this problem recursively over the general segment of187

the grid, S = {(u, v) : (u, v) ∈ [u0, u1−1]×[v0, v1−1], 0 ≤ u0 < u1 < U, 0 ≤ v0 <188

v1 < V }, which is to be split into CS ≤ C segments each of NS/CS observations,189

where NS ≤ N is the observation count for S. The recursion root is S = S0,190

CS = C, NS = N .191

Consider first an algorithm that enumerates all possible partitions. Each par-192

tition line is placed to split S into sub-segments of some multiple cNS/CS, 1 ≤193

c < CS of the observations in the segment, Figure 3. Given an area A for each194

cell in the domain, the partition line is placed at {uc, 1 ≤ c < CS} where195

uc = max
u0≤x<u1

{
x :

x∑
u=u0

v1−1∑
v=v0

ρ(u, v)A < cNS/CS

}
(1)196

or at {vc, 1 ≤ c < CS} where197

vc = max
v0≤y<v1

{
y :

y∑
v=v0

u1−1∑
u=u0

ρ(u, v)A < cNS/CS

}
(2)198

for north-south and east-west partition lines, respectively, giving 2(CS − 1) po-199

tential partial segmentations.200

For north-south partitions, these potential positions split S into201

SL = {(u, v) : (u, v) ∈ [u0, uc]× [v0, v1 − 1]} (3)202

and203

SR = {(u, v) : (u, v) ∈ [uc + 1, u1 − 1]× [v0, v1 − 1]} (4)204

so that S = SL ∪ SR and SL ∩ SR = ∅, and equivalently for east-west partitions.205

The algorithm can then be applied recursively to SL and SR, each now of NSL
206

and NSR
observations, respectively, with a target of CS − 1 computational re-207

sources assigned to them. The recursion terminates when CS = 1. Since each208
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1/4 3/4 1/2 1/2 3/4 1/4

Figure 3: Example of potential position points for the first stage of the parti-
tioning algorithm with four computational resources, where the goal is to split
off one, two or three quarters of the observations (with regions of two or three
quarters being split in later stages of algorithm); the background images are
the data density estimated from the observations in the Ernest Sound, ak test
dataset (see Section 3.1). Note the significantly larger area associated with the
1/4 position (left) image compared to the 3/4 position (right) image, due to
the significantly lower data density to the west of the partition line in the for-
mer case. Solving for a different number of computational resources would have
different partition points as the algorithm attempts to split off different sized
portions of the data.
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Figure 4: Example of a partial hierarchical tree for four computational resources,
indicating some of the potential combinations of north-south and east-west par-
titions applied in sequence to split the problem into four segments, each of one
quarter of the problem. Note the practical redundancy in many of the logically
separate partitions, which can reduce the efficiency of the search if the whole
tree is enumerated.

partition can be placed either north-south or east-west on each occasion, this al-209

gorithm naturally leads to a tree of potential partition schemes, Figure 4. Many210

of the partitions generated are logically separate (i.e., the order in which the211

partition lines were generated are different) but practically the same (i.e., the212

resulting segments are identical). This can lead to implementation efficiencies,213

a topic pursued in the following section.214

In principle, this algorithm can be applied from S0 to enumerate all leaves215

of the partition tree. Due to the granularity of the low-resolution cells, it is216

unlikely that any given partition will exactly split the problem in C segments217

of N/C observations. The viability of the different leaves of the partition tree218

can therefore be assessed according to how closely they achieve this goal, with219

the closest match being the preferred solution. An example of an 8-partition220

applied to the data in Figure 3 is shown in Figure 5.221

2.3. Partitioning Algorithm Implementation222

In theory, the partition that best matches the ideal, even, distribution of223

observations could be determined by simply enumerating the tree of potential224

partitions. The first stage of splitting has 2(C − 1) potential splits; the second225

has 2(C − 2), and so on, for a total of 2C−1(C − 1)! potential solutions. Some226

reduction in effort could be obtained by exploiting similarities in the potential227

partitions, but for any reasonable target number of segments the size of the tree228

rapidly makes a full enumeration intractable: for C = 8, for example, a reason-229

able choice for quad-core hyper-threaded processors, a total of 645,120 potential230
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Figure 5: Example of a partition for eight computational resources applied to
the Ernest Sound data (Figure 3). The segments selected by the algorithm
are shown as white outlines (with semi-transparent colours) over the sounding
count (in log-scale). Note that the segments are shown with boundaries slightly
separated for clarity; in reality, they completely tile the computational area.
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solutions would have to be enumerated; at C = 16, the total is 4.285 × 1016.231

The goal is still to evaluate the whole tree, however, so the algorithm applies232

the “branch and bound” technique (Land and Doig, 1960) to avoid evaluating233

inefficient branches of the tree as often as possible, and applies heuristics to234

attempt to accelerate the process.235

Consider the situation at any node in the tree of Figure 4. Assume that236

for any individual segment S there is a cost function P (S, N,C) that rep-237

resents the penalty for not matching the nominal ideal observation count of238

N/C observations per segment. If CS = 1 (i.e., the segment represents the239

best approximation to a single quantum of observations), then the cost can240

be evaluated directly; otherwise, the potential refinements of the segment are241

R = {v1, . . . , vCS−1, h1, . . . , hCS−1} where the vi represent north-south, and hi242

east-west partitions, respectively, computed according to (1)–(2). Each refine-243

ment induces a pair of segments (SP (r),SS(r)), r ∈ R according to (3)–(4),244

corresponding to the segment prior to, and subsequent to, the partition lo-245

cation, respectively. The overall penalty for each potential refinement of the246

segment can therefore be computed as247

P (r) = P (SP (r) ∪ SS(r), N,C)248

= P (SP (r), N,C) + P (SS(r), N,C), (5)249
250

with the individual penalties being evaluated recursively. Clearly, the optimal251

refinement is252

r∗ = arg min
r
P (r), (6)253

and the parent node therefore has a “best known partition” penalty of P (r∗).254

At each node in the tree, the partitioning decisions made further up the tree255

lead to a penalty which the algorithm has already assumed in order to get to the256

decision point represented by the node. An allowable penalty can therefore be257

passed to each node by its parent, indicating the maximum penalty remaining to258

the branch for any refinement to be viable in comparison with the best available259

refinement elsewhere; testing against this limit can therefore reduce the number260

of evaluations that need to be attempted.261

Let αS be the available penalty provided to the node for segment S; to262

seed the recursion, let αS0 → ∞, or in practice the maximum value available.263

Clearly, if P (SP (r), N,C) > αS, the proposed refinement is not viable, irrespec-264

tive of P (SS(r), N,C), and the evaluation of potential refinements of SS need265

not be computed (and vice versa). (Observe that if P (SP (r), N,C) < αS, then266

the bound for evaluating SS(r) should be P (SP (r), N,C)− αS, which can help267

to reject more potential refinements, further reducing the computation cost.)268

This bound can be incrementally tightened by observing that each refinement269

evaluated can provide a better target if P (r) < αS. Therefore, define270

α(0) = αS (7)271

α(r) = min(α(r − 1), P (r)) (8)272
273
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so that the target that candidate refinements have to better tightens as good274

refinements are determined. The ordering in which refinements are attempted275

is essentially arbitrary, but the choice of which to evaluate first for most effi-276

cient evaluation is not. Given that one side or other of the partition might be277

eliminated from consideration after the other is evaluated, it is advantageous to278

evaluate first the side that is shallowest (i.e., with smallest NS).279

The efficiency of the pruning algorithm is maximised if the algorithm can es-280

tablish a plausible solution (i.e., one close to the optimal) early in the sequence281

of evaluations, since it will lead to many more branches being pruned more282

quickly. There is no way to predict where a “good” solution would lie a priori,283

but a useful heuristic is to observe that splitting off a segment of N/C obser-284

vations early in the sequence is unlikely to provide a good solution, since the285

split position can only be adjusted by a whole row or column of low-resolution286

cells, which can contain many observations. If, on the other hand, the first split287

breaks the area approximately in half (c.f. (Berger and Bokhari, 1987)), then288

any error in the observation count can be amortised over all of the remaining289

splits. The algorithm therefore starts at the c = bC/2c position, and moves290

outward towards either extreme, swapping sides after each step (i.e., evaluating291

at bC/2c, bC/2c − 1, bC/2c+ 1, bC/2c − 2, . . .).292

Evaluating the number of observations within a proposed segment is the293

most expensive part of the partition computation. The count of observations294

within each low-resolution cell is, however, fixed. Therefore it is possible to295

utilise a variant of the summed-area table technique (Crow, 1984), also known296

as a prefix sum table (Ladner and Fischer, 1980), to cache cumulative sums and297

hence significantly improve the computation time.298

There are a number of plausible definitions for the cost function. Here, a299

simple comparison against the nominal observation count per computational300

resource is used,301

P (S, N,C) = |NS −N/C| . (9)302

In the simplest case, NS =
∑

(u,v)∈S ρ(u, v)A. Evaluation of cost functions in303

bounded arithmetic (i.e., where there is a maximum representable cost, Pmax)304

requires some care. In particular, saturation addition is required, so that if305

P ′(S, N,C) = min (Pmax, P (S, N,C)) (10)306

is the bounded arithmetic representation of the cost function, then307

P ′(r) = P ′(SP , N,C)+308

min (P ′(SS , N,C), Pmax − P ′(SP , N,C)) . (11)309
310

The chrt algorithm utilises some observations from just outside an assigned311

computation domain so as to avoid any edge effects in the estimation. If these312

are ignored, then the computational cost of processing a segment will be un-313

derestimated, potentially significantly in shallow areas with dense observations.314

Let SE be the annulus, one low-resolution cell wide, around segment S, with315

NE observations. The chrt algorithm, by default, uses observations only out316
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to
√

2W from the segment boundary for cells of width (and height) W m. The317

annulus therefore provides approximately
√

2NE observations (simplifying for318

the corner cells), and the total effective number of observations used in (9) is319

NS =
√

2
∑

(u,v)∈SE

ρ(u, v)A+
∑

(u,v)∈S

ρ(u, v)A. (12)320

2.4. Parallel Estimator Implementation321

Although the core estimation algorithm is the same for serial and parallel322

computation, some care in staging is required. The chrt algorithm supports323

virtual tiles, with memory-mapped files that are demand paged with least-324

recently-used cache replacement. The memory-mapped structures may cross325

segment boundaries, however, and to avoid interlocks it is therefore necessary326

for each computational resource to have a separate copy of the results of the327

first pass of the algorithm for the tiles associated with the segment assigned.328

Knowledge of the segment bounds allows this computation to be done a priori,329

and the parallel wrapper code can pre-copy the required files along with the330

base metadata for the data structure. After the initial configuration, the com-331

putational resources are independently scheduled as separate threads within the332

main process.333

A producer-consumer pattern is used with one consumer implementing the334

estimator for each segment of the partition. The producer implements the Com-335

mand pattern (Gamma et al., 1994) by constructing work packages for each336

stage of the computation, derived from an abstract interface, that are queued337

for all of the worker threads to execute. A modified barrier synchronisation338

pattern (Wilkinson and Allen, 2005) allows for the threads to be marshalled,339

indicating to the producer that all required computations have been completed340

(e.g., so that the client interface can determine when it is safe to request a341

reconstruction take place).342

2.5. Partial Result Reassembly343

As with the partitioning problem, reassembly of the partial results from each344

computational resource is made simpler because the segments are aligned with345

low-resolution cell boundaries. Each computational resource can therefore, on346

demand, generate its partial result and write them into the shared output data347

structure for the overall result without interlocks.348

In theory, the partial reconstruction computations for each segment could349

be overlapped with any remaining primary computation in order to avoid any350

serial-code delays. The operational paradigm for reconstruction is user-driven,351

however, so it is not necessarily the case that reconstruction immediately fol-352

lows primary computation. The test implementation therefore treats these as353

separate events.354
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3. Results355

3.1. Test Datasets356

Two datasets were used to test the performance of the partitioning algo-357

rithm, and the parallel version of chrt; both are hydrographic datasets col-358

lected by the U.S. National Oceanographic and Atmospheric Administration as359

part of the U.S. national charting programme.360

The first, a primary hydrographic survey in the vicinity of Woods Hole,361

ma, was conducted by the noaa Ship Whiting in 2001 (Barnum, 2001), and362

consists of a total of 37.7× 106 observations in depth ranges from 2–30 m. The363

second dataset is a portion of the survey conducted in Ernest Sound, ak in the364

vicinity of Union Point by the noaa Ship Fairweather in 2009 (Baird, 2009),365

and consists of a total of 9.3× 106 observations in depth ranges from 4–220 m.366

Both datasets were used previously to demonstrate the development and367

behaviour of the chrt algorithm, and are more fully described in Calder and368

Rice (2017).369

3.2. Reconstruction Partitioning370

To assess the performance of the partitioning algorithm itself, the data den-371

sity estimates from both datasets were used to compute a partition for differing372

computational resource counts. The run-time efficiency of the algorithm is es-373

sential to its use: if the algorithm takes longer to compute the partition than374

having the problem partitioned improves the run-time of the estimation algo-375

rithm, then the effort is wasted. Figure 6 illustrates the actual and relative376

computational time observed on a particular computer system, and in partic-377

ular the rapid increase in run-time engendered by increasing computational378

resource allocation (c.f. Saule et al. (2012)), as might be expected given the379

known complexity class of the general case. For the Woods Hole data, slightly380

higher run-times are observed, corresponding to the larger area being surveyed381

and the 8 m low-resolution cell size compared to the 32 m size used for Ernest382

Sound. For moderate (e.g., single workstation) resource counts, however, the383

actual run-time is significantly smaller than the estimator run-time, making384

the algorithm a pragmatic solution. (Note that the actual computational time385

is only illustrative, since it will vary with hardware and compiler selections.)386

Trade-offs between the estimator and partitioning algorithm runtime, and their387

implications for how to partition the problem, are considered further in Sec-388

tion 4.389

The potential performance of the algorithm depends on the evenness with390

which the observations can be distributed among the segments of the partition391

(i.e., the degree of deviation from the nominal allocation of N/C observations).392

Figure 7 shows the mean deviation per segment as a function of the number of393

computational resources assigned, clearly showing that the percentage mismatch394

between actual and ideal workload per computation resource is on the order of395

a few percent of nominal workload. The mismatch rises with computational re-396

sources since each segment becomes smaller, making each row or column added397
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Figure 6: Estimate of absolute and relative run-time to compute a partition as
a function of computational resource count. Note logarithmic scale on absolute
run-time plot; dashed lines (only visible to the right of the absolute run-time
plot due to scale) are 95% CI limits for N = 100 runs of the partitioning algo-
rithm. Relative run-times are computed with respect to that for a computational
resource count of two units.
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Figure 7: Percentage average deviation from ideal observation distribution per
segment as a function of computational resource count.

or removed a larger (potential) percentage of the nominal workload. The differ-398

ence between the two datasets is due to dataset size and geographical extent.399

3.3. Speedup and Processing Rate400

The two test datasets were processed using first the serial version of the401

algorithm, and then the parallel version, repeating the process 100 times in402

each case in order to gather statistics on variability. The test hardware having403

a quad-core, hyper-threaded processor, a range of 2–8 computational elements404

were considered.405

The speedup achieved for the multi-threaded version of the algorithm is406

shown in Figure 8, and the efficiency (also known as strong scaling (Barnes,407

2016)) is shown in Figure 9. The algorithm demonstrates almost perfect (and408

very slightly super-linear) speedup for 2–3 computational elements, but then409

starts to diverge from ideal speedup as the effects of cache, memory band-410

width, and I/O contention start to take effect; the corresponding efficiency411

shows the equivalent relatively gentle decline with additional computational re-412

source. Note, however, that performance does not decrease as further resources413

are added. An overall speedup of about 4.1 times is achieved, which is perhaps414

not surprising on a single quad-core (albeit hyper-threaded) processor.415

The overall computation rate per thread is shown in Figure 10. Clearly,416

the theoretical observation processing rate for each thread is constant; the ap-417
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Figure 8: Speedup achieved by the algorithm with 2–8 threads on a single,
quad-core, hyper-threaded CPU. Dashed lines indicate 95% CI limits.
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Figure 9: Efficiency of computation (i.e., speedup per computational resource
committed to the task) corresponding to Figure 8. Dashed lines indicate 95%
CI limits.

parent processing rate, however, drops as the number of threads increases and418

contention for resources takes effect. For small numbers of threads, the addi-419

tional threads lead to sufficient improvement to compensate for the reduction in420

apparent processing rate; for larger number of threads, the resource contention421

overwhelms the benefit of extra threads, leading to reduced speed improvements.422

The distribution of observations at the threads is given in Figure 11. A sig-423

nificant difference is observed between the two datasets due to the differences424

in bathymetry in the regions, and the type of echosounder used during the sur-425

veys. The more even distribution achieved with the Woods Hole dataset is one426

reason for the slightly improved speed-up observed. Analysis of the observation427

counts recorded at the threads indicates that the over-computation (i.e., the428

observations that need to be redundantly included in the partial computations429

so that no edge effects are engendered) average over all of the segments in the430

partition to approximately 2% of the total number of observations.431

4. Discussion432

The multi-threaded implementation of the chrt algorithm clearly improves433

on the overall run-time for the algorithm, being limited on a single processor434

by factors other than the CPU bound of the algorithm. That is, the algo-435

rithm could theoretically complete faster if higher memory and disc bandwidth,436
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processed) for 2–8 threads on a single, quad-core, hyper-threaded CPU. Dashed
lines indicate 95% CI limits.

19



2 3 4 5 6 7 8
Thread Count

0

2

4

6

8

10

12

14

16

18

Ab
so

lu
te

 D
ev

ia
tio

n 
fro

m
 N

om
in

al
O

bs
er

va
tio

ns
/S

eg
m

en
t (

%
)

Mean Absolute Deviation: Ernest Sound
Maximum Absolute Deviation: Ernest Sound
Mean Absolute Deviation: Woods Hole
Maximum Absolute Deviation: Woods Hole

Figure 11: Maximum and mean absolute deviation of processed observations
per partition segment from nominal “even” division as a percentage of nominal
observation count. Non-zero deviations cause non-uniform thread run-times and
hence lower overall efficiency.

20



and/or larger caches were available. Compressing the virtual tiles that act as437

intermediate results before serialization (Barnes, 2016) or the addition of solid438

state disc buffers (Barnes, 2017) might also improve the situation. On a sin-439

gle processor, however, there is a limit to achievable performance improvement,440

which suggests that it might be advantageous to distribute the algorithm over441

more nodes in order to achieve greater speedups, a topic of current research.442

An increase in the number of computational resources committed to the al-443

gorithm has implications for the overall efficiency of the algorithm, and may not444

always be advantageous. That is, although increasing numbers of computational445

resources on distributed nodes will reduce the estimation algorithm’s run-time,446

it remains an open question whether the gain will be sufficient to offset the447

partition run-time costs for larger computational resource counts. This in turn448

suggests that it might make sense to allow for a logical grouping of computa-449

tional resources (i.e., making sub-clusters), partitioning over the groups at the450

global level, and then sub-dividing the assigned segment locally within the group451

either equally, or through an iteration of the partitioning algorithm applied to452

the assigned segment; this is similar in spirit to the “hybrid” solution of Saule453

et al. (2012). This would minimise the run-time for the partitioning algorithm454

(the more so because the local sub-division could be computed in parallel),455

although it would result in a globally sub-optimal partition. The difference be-456

tween the performance of a locally optimal but globally sub-optimal solution457

and the globally optimal partition when all effects are taken into account is not458

obvious, and would require further investigation.459

The results demonstrate that the degree of even distribution of observations460

between segments depends on the problem itself, although the mean perfor-461

mance is within 1-2% of nominal for the two (very different) datasets tested.462

Absolutely even distribution is likely impossible without further complexity in463

the partitioning algorithm to allow for non-rectangular segments. This might464

not be beneficial, however. Due to the chrt algorithm’s use of observations465

surrounding each segment to ensure that there are no edge effects, a longer466

perimeter, such as could be generated with non-rectangular segments, would467

lead to more observations being drawn into a segment. This extra computation468

is redundant in the sense that more than one computational resource will have469

to do the same base computations for the observation. Although current evi-470

dence is that this is a small effect (approximately 2% of the overall load on each471

thread), increased numbers of computational resources (resulting in smaller seg-472

ments with higher perimeter to area ratios) and non-rectangular segments could473

potentially increase it to a significant degree.474

Consequently, it seems likely that further improvements to the algorithm475

do not necessarily pertain to larger numbers of computational resources. Multi-476

threading of the algorithm as applied to a single segment, for example by having477

one thread set up the data at each low-resolution cell while one or more threads478

do the processing within cells, might be a productive line of investigation.479
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5. Conclusions480

The time taken to compute a bathymetric (or other scalar field) reconstruc-481

tion from raw observations is critical for practical data processing methods;482

acceleration of the computation can also be an enabler for more advanced algo-483

rithms built on the base computation.484

The results here demonstrate that it is possible to efficiently pre-partition485

the computational task for a bathymetric reconstruction algorithm (in this case486

chrt) into a fixed number of segments, each of which has approximately the487

same amount of computational effort. This allows the computation to proceed488

without further communication between computational units, avoiding commu-489

nication or synchronisation overhead. Partition times of order 10-100 millisec-490

onds are observed for small numbers of computational resources, along with491

mean absolute deviations from even distribution of effort on order 1-2%.492

The resulting multi-threaded demonstration implementation of a parallel493

chrt, for use on a single, quad-core CPU, is observed to achieve maximum494

speed-up of 4.1 on eight threads, with the sub-linear performance being driven495

by cache, memory, and disc contention between the threads. Nominal processing496

rates of up to 1.5× 106 observations per second per thread are observed.497

Examination of algorithm behaviour (partition computation rate, redundant498

but necessary computations, and observation count balance) with increasing499

numbers of computational resources indicate that it might be fruitful to examine500

either distribution over multiple compute nodes, or multi-threading the core501

algorithm to further improve the performance of the algorithm.502
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An example implementation of the algorithm, written in C++11, is avail-507

able at https://github.com/brian-r-calder/density-partition.git, using the508

GNU GPL, version 2. The code was written to be portable, and therefore509

should require only a C++11 compiler for use; it was developed primarily510

on macOS, but has also been tested on both Windows and Linux platforms.511

Further details on compilation are provided in the source distribution. Ex-512

ample input data density files, and expected output, are also provided. An513

example implementation of a one-dimensional version of the chrt algorithm514

was published to accompany Calder and Rice (2017), and can be found at515

https://github.com/brian-r-calder/vr-grid-estimator.git. The correspond-516

ing author may be contacted for further details.517
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